

GCE A LEVEL

1500U30-1

MONDAY, 10 JUNE 2024 – AFTERNOON

COMPUTER SCIENCE – A2 unit 3Programming and System Development

2 hours

ADDITIONAL MATERIALS

A WJEC pink 16-page answer booklet. A calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Write your answers in the separate answer booklet provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question; you are advised to divide your time accordingly.

The total number of marks available is 100.

Assessment will take into account the quality of written communication used in your answers.

2

Answer all questions.

- 1. (a) Explain, giving a suitable example for each, the difference between a two-dimensional and a three-dimensional array. [4]
 - (b) This is a graphical representation of a two-dimensional string array:

july[n,n]

	0	1	2	3	4	5	6
0	Mon	Tue	Wed	Thu	Fri	Sat	Sun
1	01	02	03	04	05	06	07
2	08	09	10	11	12	13	14
3	15	16	17	18	19	20	21
4	22	23	24	25	26	27	28
5	29	30	31	Х	X	Х	

Describe how you would update the empty element in the array to x.

[2]

PMT

(c) This is a representation of a two-dimensional integer array containing the values 1 to 9:

$$2D = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]$$

Describe how you would change the value 8 to 10 in the 2D array.

[2]

PMT

- 2. Computer languages such as HTML and CSS are standardised.
 - (a) Describe the need for the standardisation of computer languages.

[4]

(b) Explain, giving a suitable example, the potential difficulties involved in agreeing and implementing standards.

[4]

3. Clearly showing each step, simplify the following Boolean expressions using Boolean algebra, identities and De Morgan's Law where appropriate.

(a)
$$(1.X + \overline{Y.Y}).\overline{X} + X.Z$$

[6]

(b)
$$(\bar{A}.A + A.A).1 + B.C.0$$

[6]

4. Write an algorithm to search an unsorted one-dimensional array of strings and replace any duplicate values with the string "X" and then output the array. [8]

15000301

[2]

5. This algorithm validates a password for a given string.

```
1
     declare password as string
     declare digits as char[]
2
3
     declare special as char[]
4
    declare length, i as integer
    declare valid, w, x, y, z as Boolean
5
     set digits = {'0','1','2','3','4','5','6','7','8','9'}
6
7
     set special = {'!','@','£','*','?'}
8
     set length = 8
9
     set i, j = 0
10
     set valid, x, y, z = FALSE
11
12
     do
13
         output "Enter a password: "
14
         input password
15
         if len(password) >= length
16
               set x = TRUE
17
         end if
18
         for i = 0 to len(password) - 1
19
               for j = 0 to len(digits) - 1
20
                   if password[i] = digits[j]
21
                        set y = TRUE
22
                   end if
23
              next j
24
         next i
25
         set j = 0
26
         for i = 0 to len(password) - 1
27
               for j = 0 to len(special) - 1
28
                   if password[i] = special[j]
                        set z = TRUE
29
30
                   end if
31
              next j
32
         next i
33
         if NOT x OR NOT y OR NOT z then
34
               output "message 1"
35
         else
36
               output "message 2"
37
               set valid = TRUE
38
     while valid = FALSE
```

- (a) Using a table, select **three** appropriate pieces of test data to dry-run the algorithm and trace the variables x, y, z, valid and the expected output. [6]
- (b) Suggest suitable text for message 1 and message 2.

6.	Whe	When evaluating computer-based solutions, there are several criteria that can be considered.							
		Describe the following criteria when evaluating computer-based solutions and give suitable examples:							
	(a)	Usability	[2]						
	(b)	Performance	[2]						
	(c)	Scalability	[2]						
	(d)	Security	[2]						
7.	 A website URL is made up of a protocol, a domain name, and an optional file path. The protocol can only be "http" or "https". The domain name can only consist of alphanumeric characters, hyphens and full stops. The protocol and domain name must be separated by a colon and two forward slashes. 								
	•	The optional file path must start with a forward slash and can only contain alphanume characters and forward slashes.	eric						
	Exan	Example: https://www.wjec.co.uk/home/							
	Prod	uce a Backus-Naur form (BNF) definition for a valid website URL.	[6]						
8.	Explain program version management.								
9.	Expla	Explain, using suitable examples, recursive and non-recursive sorting algorithms. [8]							

© WJEC CBAC Ltd. (1500U30-1) Turn over.

6

10. This is a signed 8-bit integer:

000011112

Include this integer in a worked example to demonstrate how masking can be used to determine the sign of the integer.

[3]

11. This algorithm merges two one-dimensional arrays of length *n*. Assume the arrays (myArray1 and myArray2) have already been populated with data.

num(array) returns the number of elements currently in the array.

```
declare i,j as integer
2
     declare myArray1[n]
3
     declare myArray2[n]
     declare myArray3[]
4
5
     set i = 0
6
7
     set j = 0
8
     for i = 0 to len(myArray1) - 1
9
10
          set myArray3[num(myArray3)] = myArray1[i]
11
     next i
12
13
     for j = 0 to len(myArray2) - 1
          set myArray3[num(myArray3)] = myArray2[j]
14
15
     next j
16
17
     output myArray3
```

- (a) Evaluate the efficiency of the algorithm and, using Big O notation, determine the growth rate for time performance. [5]
- (b) Determine the growth rate of memory space during a single run of the algorithm. [2]
- (c) Identify the type of time complexity and draw a graph of the algorithm to illustrate the order of time performance. Graph paper is not required. [2]
- **12.** Explain, giving a suitable example, the shortest path algorithm. [4]
- **13.** Discuss the potential use of natural language interfaces in human-computer communication to address the problem of communicating with computers.

You should draw on your knowledge, skills and understanding from a number of areas across your computer science course when answering this question. [12]

BLANK PAGE